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APPLICATION OF FINITE ELEMENT ANALYSIS TO GROUP 

SHAFT INTERACTION 

1.1 Introduction 

The FE model developed in book titled “An Insight into the Finite Element Modeling 

Methodology of SSI” is modified for application of FEA to group shafts.  

Within a group shaft, there is an interaction between the soil and the shaft and also 

interaction between the shafts through the soil. The analysis of multiple shafts in a 

group under a lateral loading takes into account the interaction among the shafts 

that influence the lateral capacity of the individual shafts. Group shaft behavior is 

mostly dependent on the spacing of the shafts. The displacement of a shaft under 

lateral loading creates stresses within the surrounding soil. The stresses 

generated within the soil are transmitted along influence zone around the shaft 

and have an effect on the neighboring shafts that depends on their center-to-

center spacing. The further the shafts are spaced from each other the less is the 

mutual interaction among them and their individual capacities are similar to that of 

a single shaft. However, as the spacing between the shafts decreases so does 

their individual capacity because the soil around a shaft is also influenced by a 

neighboring shaft. The finite element approach has the capability of performing 

SSI analysis of shaft-groups in a fully coupled manner, without resorting to 

independent calculations of superstructure response, or application of shaft group 

reduction factors. 

To this end, in order to observe the effect of shaft spacing on the lateral load 

capacity of the individual shafts, two types of shaft groups were analyzed. The first 

group (I) includes two shafts with a center-to-center spacing varying between 2D 

and 10D. The second group (II) includes three shafts, which are positioned in a 

triangular shape with a center-to-center spacing that varying between 2D and 10D.   
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The shafts are constrained at the column tips i.e. the displacement at the top of the 

columns are the same.  In order to analyze the effect of soil strength and shaft 

slenderness on group shaft behavior and response, group-I shafts was analyzed 

for two different soil strengths and two different shaft depths. To observe the 

effect of soil strength on the group behavior, two shafts with 100ft depth and 6ft 

diameter and a column height of 20ft were analyzed for nh1=50pci and nh2=25pci. To 

observe slenderness effects on the group behavior, a 50ft deep shaft with a 

diameter of 6ft and a column height 20ft was analyzed in a dense dry sand with 

nh1=50pci. For the group-II, the shafts were 6 ft in diameter and 100ft deep dry 

dense sand with nh=50pci. Each shaft is loaded with a lateral load of 50kip and the 

columns are tied to each other as explained earlier. 

 

1.2 Two-Shaft Group (Group I) 

The two shafts in the group were aligned with varying center-to-center spacing in 

order to establish a relationship between the shaft response and the shaft spacing. 

A lateral load of 50kip is applied at the top of each column in the direction parallel 

to the shaft alignment. Figure 1.1 shows three-dimensional views of 100ft and 50ft 

deep shafts and figure 5.2 shows the typical cross-section of the two-shaft group. 

The shafts are fixed at the bottom. Three element types are used to model the 

group shafts. The outermost layer of soil shown in figure 1.2 consists of the infinite 

elements CIN3D8 that represent soil continuity. The remaining soil elements are 

full-integration C3D8 elements and the shaft elements are reduced integration 

C3D8R elements. The total number of elements used for the two-shaft group was 

8480 and the total number of nodes was 10705 (1200 CIN3D8 elements, 4880 C3D8 

elements and 2400 C3D8R elements with a total of 32115 dof). The 
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ABAQUS/Explicit analysis time of the two-shaft group on a 2.4GHZ processor is 

approximately 18 minutes. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 – Three-dimensional views of 100ft and 50ft deep of Group I. 
 

 

 

 

 

 

 

 

Figure 1.2 – Typical cross section of a group I. 
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Figure 1.3 shows a very simple and out-of-scale depiction of the resistances 

developed within a group shaft system with two shafts subjected to lateral loading. 

Under the influence of lateral loads, surface separations will form at the locations 

represented by 1 and 2. The soil resistance developed due to the applied loads is 

represented by a and b. Under such a loading scheme, resistance a is a variable 

depending on the center-to-center spacing of the two shafts. However, there is a 

surface separation at location 2 due to lateral displacement of the second shaft, 

thus the necessary bearing cannot form which lowers the available resistance a. 

Under a lower soil support, the portion of the lateral load F that has to be resisted 

by the shafts increases which results in larger displacements. 

 
 

 

 

 

 

 

 

 

 

Figure 1.3 – Laterally loaded group shaft. 
 

In order to identify the effect of the shaft spacing on the shaft response, the shafts 

were loaded parallel to their alignment and displacements were obtained.  Figure 

1.4(a) shows the variation in shaft displacements with increasing center-to-center 

spacing of the shafts for dense sand with nh1=50pci and medium sand with 

nh2=25pci. As the c-to-c spacing of the shafts decrease, the shaft displacements 
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increase, indicating lower soil stiffness. Figure 1.4(a) shows the variation of 

maximum shaft displacement with c-to-c spacing. The displacement values 

become lower and the mutual influence of the shafts diminish as the results 

converge to a value at 10D. In order to relate the influence of shaft spacing to shaft 

response, the displacements of a single shaft has been divided by the 

displacements of a shaft within the group. The ratio of these displacements has 

been plotted in figure 1.4(b). 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 – (a) Variation in shaft displacements and (b) Displacement ratios with 
respect to single shaft, versus center-to-center shaft spacing. (Group I) 
 

Figure 1.5(a) shows the variation in maximum displacements for 100ft deep and 

50ft deep shafts with 6ft diameter in dense sand (nh=50pci). Figure 1.5(b) shows 

the variation of the displacement ratios with respect to the displacement of a 

single shaft, with variable shaft spacing. 
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Figure 1.5 – (a) Variation in shaft displacements and (b) Displacement ratios with 
respect to single shaft, versus center-to-center shaft spacing. (Group I) 
 

The higher flexural stiffness of the 50ft shaft results in slightly lower 

displacements; however, the variation of the displacements with increasing c-to-c 

spacing of the shafts is the same. 

Since the ABAQUS/Explicit procedure was used to analyze the soil-structure 

interaction of the group shafts, the soil mass and the concrete mass were included 

within the analysis. To this end, in order to observe the effect the soil mass has on 

the displacement results as well as the variation of the displacement with shaft 

spacing, the group-shaft model was analyzed for three different soils with the 

following densities ( ):2.795 lb.s2/ft4, 3.7267 lb.s2/ ft4, and 4.6583 lb.s2/ ft4 which has 

the unit weights (w) of: 90pcf, 120pcf, and 150pcf. Figure 1.6(a) shows the 

variation of maximum shaft displacement with varying center-to-center spacing. 

Figure 1.6(b) shows the variation of the displacement ratios with respect to single 

shaft, with shaft spacing. 
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Figure 1.6 – (a) Variation in shaft displacements and (b) Displacement ratios with 
respect to single shaft, versus center-to-center shaft spacing. (Group I) 
 

Typical variation of displacement with changing center-to-center spacing is shown 

in figure 1.7. Note that as the c-to-c spacing decreases, the soil stiffness 

decreases resulting in larger displacements.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 1.7 – Variation of shaft displacement with varying c-to-c spacing. (Group I) 
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Typical variation of moment along the shaft with varying center-to-center spacing 

is shown in figure 1.8. Figure 1.8 shows that as the c-to-c spacing decrease, the 

bending moments along the shaft increase. This increase becomes evident below 

10-15 ft below the ground surface and becomes significant as the spacing 

becomes 4D or less. Larger moments were also observed at the shaft support, as 

the lateral soil support to the shaft decreased with decreasing spacing. 

Overall, the reduced soil support decreases the stiffness of the SSI system 

resulting in a higher shaft displacements and moments. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 1.8 –Variation of moment along the shaft depth with varying c-to-c spacing. 
(Group I) 
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1.3 Three-Shaft Group (Group II) 

In the previous section, the lateral loads were applied in the longitudinal direction 

to Group I. In order to examine the effect of a different type of shaft configuration 

as well as the effect of c-to-c spacing on lateral load capacities of shafts, a three-

shaft group (Group II) was analyzed as shown in figure 1.9. Figure 1.9 shows the 

three-dimensional view and the cross-section views of the three-shaft group. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9 – Perspective and plan views of 3-shaft group. (Group II) 
 

The outermost layer of soil shown in figure 1.9 consists of the infinite elements 

CIN3D8 that represent soil continuity. The remaining soil elements are full-

integration C3D8 elements and the shaft consists of reduced integration C3D8R 

elements. The total number of elements used on the three-shaft group is 9420 and 

the total number of nodes is 11864 (960 CIN3D8 elements, 5760 C3D8R elements 

and 2700 C3D8R elements) with a total of 35601dof. The ABAQUS/Explicit analysis 

time of the two-shaft group on a 2.4Ghz processor is approximately 20 minutes. 
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Each shaft is 6ft in diameter and 100ft deep with 20ft column height in dry dense 

sand (nh1=50pci). Each shaft is laterally loaded with 50kips at an angle 45  with 

respect to the horizontal axis in order to observe whether the application of lateral 

loads at an angle to alignment of the shafts has an effect in the variation of shaft 

capacity. The c-to-c spacing was varied between 2D and 10D, similar to group I. 

Figure 1.10(a) shows the change in maximum displacement with spacing while 

figure 1.10(b) shows the variation of the displacement ratio of the group shaft with 

respect to the single shaft, versus shaft spacing.  Note that the behaviors are 

almost identical to those observed for the two-shaft group (Group I). 

 

 

 

 

 

 

 

 

 

Figure 1.10 – (a) Variation in shaft displacements and (b) Displacement ratios with 
respect to single shaft, versus center-to-center shaft spacing. (Group II) 
 

Figure 1.11 shows the lateral capacity reduction of the shaft with changing c-to-c 
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Prakash (1990) states according to theoretical studies that group action will not 

develop when the shafts are spaced more than six to eight diameters parallel to 

the direction of the loading. Table 5.1 is a tabulation of the reduction factors for 

group shaft proposed by Davisson and Oteo.  

Table 1.1 – Shaft capacity reduction factors for a shaft within a group with respect 
to a single shaft. (Davisson and Oteo) 
 
 
 
 
 
 
 
 
 
Figure 1.11 is a combined plot of the previously presented figures and it shows that 

beyond a spacing of 8D the difference in displacements of the group shafts 

steadily diminishes. Using regression analysis for the data extracted from FE 

analysis, similar coefficients to that of Davisson and Oteo (table 1.1) that relate the 

ratio of the response of a shaft within a group to the response of a single shaft with 

varying c-to-c spacing can be proposed. Table 5.2 shows a similar tabulation of 

capacity reduction coefficients for shafts within a group with varying c-to-c 

spacing. 

Table 1.2 – Shaft capacity reduction factors for a shaft within a group with respect 
to a single shaft. (Based on FEA results) 
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Figure 1.11 – Comparison of displacement ratios with shaft spacing from FE 
models and existing relations. 
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